Spray Combustion Characteristics and Soot Emission Reduction of Hydrous Ethanol Diesel Emulsion Fuel Using Color-Ratio Pyrometry

نویسندگان

  • Xiaoqing Zhang
  • Tie Li
  • Pengfei Ma
  • Bin Wang
چکیده

To elucidate the relationship between physicochemical properties, spray characteristics, and combustion performance, a series of experiments have been conducted in a constant volume vessel with injection of hydrous ethanol diesel emulsion and regular diesel. HE30 (emulsion with 30% volume fraction of 20% water-containing ethanol and 70% volume fraction of 0# diesel) is developed using Shah’s technique and regular diesel is also employed for comparison. Firstly, the physicochemical properties of two kinds of fuels are investigated. Then, the non-evaporating and evaporating spray characteristics are examined through the high-speed shadowgraphs. Finally, spray combustion experiments under different ambient oxygen concentrations are carried out, and color-ratio pyrometry (CRP) is applied to measure the flame temperature and soot concentration (KL) distributions. The results indicate that the physicochemical properties, such as density, surface tension, kinematic viscosity, cetane number, and oxygen content, have significant impact on the spray mixture formation and combustion performance. HE30 exhibits lower soot emissions than that of regular diesel. Further analysis supports the standpoint that the hydrous ethanol diesel emulsion can suppress the soot and NOx simultaneously. Therefore, the hydrous ethanol diesel emulsion has great potential to be an alternative clean energy resource.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation ofthe Effects of Oxygenate and Nitrate Component Additives on Physico-Chemical Properties and Exhaust Emission of Diesel Fuel

This study evaluates the effect of additives on diesel and of additive-ethanol-diesel fuel blends on the density, viscosity, cetane number, flash point,boiling point, distillationand performance in engine tests. An additive is used to keep the blends homogenous and stable, and an ignition improver, which can enhance cetane number in ethanol-diesel fuel blends. The formulations were carried out ...

متن کامل

Prediction of Major Pollutants Emission in Direct-Injection Dual-Fuel Diesel And Natural-Gas Engines

The dual-fuel diesel engine (D.F.D.E) is a conventional diesel engine in which much of the energy released, hence power, comes from the combustion of gaseous fuel such as natural gas. The exhaust emission characteristics of the D.F.D.E needs further refinements, particularly in terms of reduction of Unburnt Hydrocarbons (U7HC) and Carbon Monoxide (CO) emission, because the concentration of thes...

متن کامل

Three-Dimensional Modeling of Combustion Process, Soot and NOx formation In a Direct-injection Diesel Engine

This paper is presented to study the combustion process and emissions in a direct injection diesel engine. Computations are carried out using a three-dimensional model for flows, sprays, combustion and emissions in Diesel engines. Interactions between combustion and emissions with flow field are considered and it is shown that soot mass fraction increases at regions with low turbulence inten...

متن کامل

Investigating the effects of fuel injection strategies in a dual-fuel diesel-H2 compression ignition engine

In this computational research, the separate and simultaneous impacts of diesel direct injection timing, fuel spraying cone angle, and hydrogen gas addition on combustion characteristics, output emissions, and performance in a single-cylinder direct injection diesel engine was studied. In order to conduct the simulations, valid and reliable models for combustion, break-up, and for turbulence wa...

متن کامل

Numerical Modeling of Soot Emissions in n-Heptane Spray Using Multistep Soot Model with Detailed PAH Chemistry

Introduction The present day oil crisis and need for more fuel economy has driven the demand for diesel powered automobiles. Diesel soot is one of the primary emissions of diesel combustion and accurate modeling of soot formation is a challenging area for combustion researchers. The soot formation in diesel engine combustion has been previously modeled using a twostep phenomenological model whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017